Laser ion source for Columbia University s microbeam

نویسندگان

  • A. W. Bigelow
  • G. Randers-Pehrson
  • R. P. Kelly
  • D. J. Brenner
چکیده

A laser ion source that will be installed on the new High Voltage Engineering (HVE) 5 MV Singletron accelerator at the Columbia University Radiological Research Accelerator Facility (RARAF) will expand the linear energy transfer (LET) range available for irradiation experiments with mammalian cells. Through laser ablation the laser ion source can produce heavy ions with high charge states from a solid target; after acceleration, these ions will have sufficient energy to irradiate cells on a thin surface at atmospheric pressure. A high-power 100 Hz pulsed Nd:YAG laser used with the laser ion source has produced aluminum ions with charge states greater than nine. Proper power management issues are important in obtaining the high charge states while protecting sensitive laser optics. We expect that the laser ion source will enable us to use ions from hydrogen to iron, providing an LET range of about 10–4500 keV/lm for cell targets. 2005 Elsevier B.V. All rights reserved. PACS: 41.75.Ak; 41.85.Ne; 52.38.Mf; 79.20.Ds

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Testing the stand-alone microbeam at Columbia University.

The stand-alone microbeam at Columbia University presents a novel approach to biological microbeam irradiation studies. Foregoing a conventional accelerator as a source of energetic ions, a small, high-specific-activity, alpha emitter is used. Alpha particles emitted from this source are focused using a compound magnetic lens consisting of 24 permanent magnets arranged in two quadrupole triplet...

متن کامل

The Columbia University single-ion microbeam.

A single-ion microbeam facility has been constructed at the Columbia University Radiological Research Accelerator Facility. The system was designed to deliver defined numbers of helium or hydrogen ions produced by a van de Graaff accelerator, covering a range of LET from 30 to 220 keV/microm, into an area smaller than the nuclei of human cells growing in culture on thin plastic films. The beam ...

متن کامل

Ion, X-ray, UV and Neutron Microbeam Systems for Cell Irradiation.

The array of microbeam cell-irradiation systems, available to users at the Radiological Research Accelerator Facility (RARAF), Center for Radiological Research, Columbia University, is expanding. The HVE 5MV Singletron particle accelerator at the facility provides particles to two focused ion microbeam lines: the sub-micron microbeam II and the permanent magnetic microbeam (PMM). Both the elect...

متن کامل

The Columbia University microbeam II endstation for cell imaging and irradiation

The Columbia University Microbeam II has been built to provide a focused ion beam for irradiating designated mammalian cells with single particles. With the interest in irradiating non-stained cells and cells in three-dimensional tissue samples, the endstation was designed to accommodate a variety of imaging techniques, in addition to fluorescent microscopy. Non-stained cells are imaged either ...

متن کامل

UV microspot irradiator at Columbia University.

The Radiological Research Accelerator Facility at Columbia University has recently added a UV microspot irradiator to a microbeam irradiation platform. This UV microspot irradiator applies multiphoton excitation at the focal point of an incident laser as the source for cell damage, and with this approach, a single cell within a 3D sample can be targeted and exposed to damaging UV. The UV micros...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005